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ABSTRACT - I build a new statistic for the
characterization of frequency stability of clocks and
oscillators. It improves on the traditional Allan
variance statistic especially at long averaging times.

INTRODUCTION AND SUMMARY

The impulse response of the commonly used
technique of differencing of independent random
variables overlaps (correlates) "odd" and "even"
deviates except the first and last one if the data are
not wrapped. This implies there are about twice as
many deviates as there are actual degrees of freedom
in the mean-square, and the resulting sample Allan

variance is appropriately divided by 2(M-1). We
obtain
2 1 M-1 M-1
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where {y,}, k' = 1,2,3,...,.N-1 are fractional
frequency differences averaged over 7, and {y,}, k
= 1,2,3,...,M are fractional frequency differences

averaged over interval mr,. Hence 6; is implicitly
dependent on dimensionless quantity m, a scale
parameter which for efficiency can be limited to

rational powers of 2, i.e., 2i=m, i=0,1,2,3,...

The sample Allan variance is useful as a power-law
(octave band) spectral estimator but is time-shift
(phase) sensitive and depends on where we start the
calculation with respect to data in process. For large
data sets and small scale values of m, the odd and
even deviates average together in the equation for a
fairly accurate estimation of a broadband spectral
distribution or variance of first differences. The
division by 2(M-1) is arguably due to overlapping
two sets of deviates but ought to approach M-1 for an
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accurate estimate in the statistic as mr, - T/2 since
the first and last deviates do not overlap (unless the
data are wrapped). Under most conditions, wrapping
the data improves the estimate. However, at the
largest scale, the estimate degrades for another
reason, namely the sample variance has no response
to an evenly symmetric function at this scale. These
reasons cause an estimation error or what can be
misinterpreted as a "bias" at long intervals in
virtually all cases even though the estimation is
actually unbiased.

Realizing this, we can re-express deviates in terms of
"in-phase" and "phase-shifted" versions of sample
variances. Examining this result reveals that the
argument in the sample Allan variance above is
essentially twice the in-phase variance only. Shifting
the observation or sampling window by 7, and
wrapping the data with an overall frequency
difference removed will conveniently yield N-1
sample variances which can be averaged with the
usual in-phase sample Allan variance. For Vil =

Y1»-+-»Y N1 this statistic is given by
, P M M
~ vy, 32
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where {yi;} = Y1,y YJ+2’ 5 YND Y1 Y2oueeY
are spaced by 7, and {y,} is therefore wrapped and
reindexed by j. {?k’j} are averages implied over 7 =
m7,. This variance reduces estimation errors
universally seen in previous treatments, thereby
providing a much better estimate of frequency
stability for measurement times longer than say 20%
of the data length.

DISCUSSION

This paper presents a very simple example which
shows a common and heretofore undiscussed pitfall
in the calculation of the sample version of the Allan
variance for long averaging times 7. The sample
Allan variance is preferred over the modified
variance for long-term frequency stability estimation
since 7 can be as long as T/2 whereas 50% more data
length is required overall for the modified version



using the same 7. The concepts of this paper can
easily be extended to the modified variance however.

In frequency-standards metrology, measurements of
average relative frequencies are passed through a
first-order high-pass filter which is used for removing
nonstationary behavior [Box and Jenkins, 1970]. A
digital (discrete) version of such a filter (known as
finite impulse response or FIR) is routine for creating
stationary variates from original nonstationary
variables with a "red" PSD having a power-law noise
process no steeper than o<f? [Rabiner and Gold,
1975]. Furthermore it necessarily correlates
otherwise random uncorrelated measurements
assumed to be independent [Beran, 1992] [Box,
Hunter, Hunter, 1978]. The sample variance of
overlapping (not necessarily maximally overlapped)
first-differences quantifies spectral features of the
data using a smooth broadband, constant-Q,
equivalent frequency-domain response [Allan, Weiss,
Jespersen, 1991] [Howe and Percival, 1994]. This
filter unfortunately has deep nulls at the reciprocal of
the averaging time and its harmonics. For broadband
noise, a sequence of many overlapping deviates is
averaged; hence there is an average of as many
arbitrary phases associated with an equivalent
frequency-domain filter. However, for long scales,
the nulls in the filter response can dramatically affect
the result because averaging cannot be claimed as an
advantage since only one or two deviates may be
involved. The problem is that particular stochastic
processes having even functional symmetry over the
finite observation can put virtually all of the noise
power precisely in the filter’s nullpoints at the longest
scale.

FIR filter concepts are used in this paper because
they relate directly to the nth-order differences used
in the statistics quantifying frequency stability. They
also help clarify the problem addressed in this paper
in using the sample Allan variance.

To begin, the N-sample standard variance is not
convergent for the often encountered case of red
noise processes of the measured relative phase of an
oscillator {x,.}; it is highly variable with averaging
time 7=m7, or correspondingly half of the reciprocal
sampling frequency and its aliases. We assume that
differencing techniques allow probability theory to be
applied to such mnon-convergent time series.
Differencing creates the new series {X"j,...,X n}
formed from the original series {Xq,...,xx} by the
"V" operator as [Brockwell and Davis, 1987]
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Xp = Xy X = V.

Essentially, differences of high enough order "pre-
whiten" measured data which is then subject to
classical statistical treatment. A first-difference of
average frequency has proven to be a simple and
adequate whitening filter for oscillators [Barnes, et
al., 1971]. Thus the two-sample (first difference)
standard varijance of frequency was one of the first
suggested frequency stability measures [Allan, 1966].
Briefly, it is (using the notation in [Allan, 1966]):

0}27(1:) = of,d(2,1=T). @)

All measurements are discrete, not continuous.
Interval Ak is taken to be minimum (denoted in a
time series by 7,) with other longer intervals given by
mAk (denoted by 7), where m = 1,2,3,....for
efficiency however m is often limited to increments
of rational powers of 2, i.e., m=2i i = 0,1,2,3,...
More specifically, we start with assumed independent
discrete variables {x,.}, sampling (spatial or
temporal) interval Ak (separating time marks t. if a
time series), and m which designates the shift or
"stride" in an unprimed index k derived from k’ such
that k is incremented once for every mth increment of
k’. Hence k = k'/m, and mAk (i.e., 7) is the
physical spacing or scaling of measurements within
total observation M or T for k = 1,2,3,...,M.
Recall that M and T are actually dimensions of space
or time which are proportioned to dimensionless
integers for mathematical convenience. Although
confusing, averaging-time dimension "7" is often
used in the context of statistics having dimensionless
mAk _ 7T,

o
commonly, the unprimed index k has an implied scale
m and {x, } is a sequence with spacing mAk of
measured phase differences between two oscillators;
{—fk,m} are average frequency differences. That is

’kl
)7k,m=)7k;n(tk/—mro,tk/)=;1— f y(thdt'=
e ©)

Ak, k, and M such that Most

Xyt b=t ) A1) X tmMem
me,

mto

Additionally, an important procedure assumed in this
paper is that overall frequency difference (A?l_,N) is
removed. This means that xy = X, which without
loss could be set to 0. From eq (1) and eq (3) it




Yisees YN iS such that

and generally

follows that {y,}

5= 1 <
(A )
TO
5. - 1 o
k,m me, km*
By removing an initial time offset, we can construct

{y} from {x,.} and vice-versa.

C))

If process {y } is white, eq (2) is equivalent to

og(m‘ro) = 1/2<()7k+1,m-}7k,m)2>’ (5)
where {y, .} is an infinitely long series of
nonoverlapping averaged discrete measurements of
process y(t); the averaging time is given by mr, = 7;
"<>" denotes an infinite-time ensemble average;
and k(origin) = t,. We of course never can calculate
this variance but can calculate a statistic which serves
as an estimate. We often refer to a calculation of
"the variance” when we usually mean "the statistic”
or sample variance.

If series {y,} is derived from a continuous function
y(), the fractional frequency difference of two
oscillators, then we must infer that each sampled
random variable is an average over r=mr,. The
recommended sample variance of first-differences of
{y«} (denoted hereafter as AVAR) is

6;("1:”) = 2(M ) Z (AL

©6)

2(M 1) Z ( yk+1)

Equation (3) can be combined with eq (6) for AVAR
in terms of {x,.}. The elements y,,, - y, (called
"deviates") corresponding to a particular value of 7
derive from changes in the data having a

corresponding frequency of (and its aliases)

and a corresponding phase given by the starting point
at k=k(origin) [Howe, Allan, Barnes, 1981]. The
sample variance is therefore not only dependent on 7
but is additionally always phase-sensitive, i.e.,
dependent on where we start the calculation with
respect to data in process.

Although this paper is not directly about an
inconsistent statistic due to an improper number of
degrees of freedom, the improper normalization or
scaling by degrees of freedom for short data lengths
also create an obvious inaccuracy or bias- in its
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corresponding statistic. Briefly, inaccuracy or bias
can be quantified using simulated data by an
inconsistent trend (given by the slope) of the
calculated statistic decomposed as a function of 7 or
equivalently what is called the power-law
characterization (again the slope) of an estimated
power spectral density (PSD). The division by 2(M-
1) in eq (6) is justified by the argument that the two-
sample variance in the infinite limit is the same as the
standard variance (which divides by M-1 only) for a
white Gaussian power-law process since the cross
product of (y,,;-Y)* goes to zero vyielding
(y2,,+y?), namely, the sum of two standard
variances shifted by mAk. For M = 2Ak and M =
4Ak, eq (6) has finite impulse response (FIR) or
"convolving function" shown in figure 1(a) and 1(b).

h(mAk)
| k@ I k@)

+1 ——| +1 -_____.|
— Ak, 1 Ak, | Aky | Ak, >
l (mAk)

h(maAk)

k(1) k(1)
Ak} + Ak~ -2AKk |- +24K~]
'<—M=2AkA—> l«—— M=4Ak
@ m=1 ®) m=2

Typical first-order high-pass impulse responses; mAk=k.
Deviates (x,,y — x,) are from adjacent random variables.
The usual variance overlaps adjacent deviates.

Fig. 1

The sample variance of first-difference deviates is an
average of these squared deviates at spacings of mAk
within the total observation M as shown in eq (6).
Adjacent deviates are not independent. Each element
(Yg+1-Yi) is half of the preceding and following
elements (except for the first and last). For example,
element (§3 ?2) is not independent of preceding
element (y,-y,) since both elements equally include
y2 Similarly, the following element (y4 y3)
contains y;. As a result the variance will correlate
each element even though the original data is
uncorrelated (as is the case with a white Gaussian
process) [Yoshimura, 1976].  This correlation
vanishes at the longest scale because deviates no
longer overlap, that is, as mAk —> M, there are no
overlapped deviates; in this case therefore the
division (or normalization) should be M-1 in eq (6)
rather than 2(M-1). Wrapping the {x,.} data allows
2(M-1) to be used even at the longest scale and hence
is a way to get around this particular long-scale bias.
Wrapping means that X, = X .y for ¢<1 and



¢>N, i.e., X; = Xy4i- An assumption of
stationarity implies that the wrap can be applied. The
procedure also must include matching the endpoints
(i.e., xy=x;) of {X;/} to avoid a step in the wrapped
data. This, as mentioned, is easily done when an
overall frequency difference is removed. We must
eliminate the increment xy to Xy, in the wrap to
avoid a potential bias since they are made the same
value. Furthermore we must pay attention that N is
even (N-1 is odd) because AVAR (in terms of {x.})
is a second difference of distinct phase values and
could inadvertently respond with O at the longest
possible scale if N is odd. Using {y,} derived from
{x,/} eliminates the concern regarding whether the
total should end up being odd or even.

Yet another pathological analysis error can occur.
We first separate the variance into two nonoverlapped
versions with odd and even indexes to emphasize that
it is a sum of variances [see, for example, Jenkins
and Watts, 1968]:

2 = =32
05(t) =V2< (. ~¥)™>
y ket " Vi @
= 1/2[<072k —}_’Zk-l)2> + <6'_2k+1 _izk)2>]
where the first term on the right is the odd-indexed

deviates and the second term is the even-indexed
deviates.

h(mAk) h(mAk)
L kel PETC)
Aky Ak | Ay Aky Aky B | Akg| Ay
(mAk) {mAKk)
-1 —~— -1 ——
k(1) k(2)

—2ak —|— 424K
l«—— M=4Ak

{a) Adjacent impulse response
of add marks only for m=1

Fig. 2

24K 420K
l«—— M=4Ak

(b} Adjacentimpuise response
of even marks only form=1

To go further, note that deviate y,, -y requires a
total interval of 2mAKk and is centered at k. That is,
Y is derived from the interval spanning k-1 to k, and
Y1 is derived from span k to k+1. So the location
of Vy, . is centered at k and its information content
spans 2mAk with odd indices at k = 1,3,5... and
even indices at k = 2,4,6... as shown in figure 2
where m = 1. From this view, the localization of
the odd and even marks of span 2Ak have a fixed

phase relationship or phase difference of Ak
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corresponding to a half-period of a fundamental
periodic change to which the deviate identifies and
assigns an amplitude. Now consider AVAR as a
power-law (constant-Q) spectral estimator [Allan,
Weiss, Jespersen, 1991]. For a frequency component
in {y,} at f = 1/(27), the first term of the bottom
expression of eq (7) detects an in-phase or 0°
reference phase, and the second term detects an out-
of-phase or 180° (relative to 0°) phase. By
inspection, there is a fundamental change at the same
frequency f = 1/(27) which can go undetected in the
interval, namely, one-quarter and three-quarter period
(or 90° and 270° phase-shifted) changes.

Deviations of a particular kind can go undetected in
a 2mAk (or 27) interval using AVAR. From a
spectral point of view, the usual finite estimation of
the original Allan definition is problematic because of
this. From a time domain viewpoint the problem is
that deviates are zero if the average frequency of the
first interval equals the average frequency of the
second which is true for an infinite set of even
functions. The Allan statistic therefore has no
response to any even function over the whole
interval. As an example of the problem, hypothetical
data are shown in figure 3 by the noisy plot over
observation M. The statistic as described by eq (6)
for M = 4Ak will have deviates made from mean
values y, for segments k=1,...,4. A linear fit is
indicated by the solid-line segments plotted with
slopes 0, +A/Ak, —A/Ak, and O respectively. The
resuitant plot has even functional symmetry over M
with

Example of even symmetric function over observation M

Fig. 3



According to AVAR, the sample statistic of eq (6),
0*(24k) = 0. Obviously, the variance is not really
0 yet our estimate is 0. In this regard, determining
and removing a polynomial (particularly a drift
coefficient) over the interval has meaning only if the
procedure is physically correct. Drift removal is
model-dependent [Barnes, 1983]. A popular method
involves quantifying drift as an overall second-
difference of {x,.} which, when removed, results in
the usual sample Allan variance being precisely 0 at
the longest = [Weiss, Allan, Howe, 1992] [Weiss and
Hackman, 1992).

We replace the Allan two-sample function (which 1
will denote as "real" or "in-phase”) shown in figure
1 and reproduced in figure 4(a) by a phase-shifted
version of it to pick up variations in a phase-
quadrature component of the data over the coarsest
interval or longest scale of 7. This turns out to be a
three-sample sequence over each interval which is
shown in figures 4(b) and 4(c) and denoted as
"imaginary” or "phase-quadrature" functions. The
Allan two-sample in-phase function has odd
functional symmetry in the interval 27 as shown in
figure 4(a) and hence is suitably an "odd sampling
window function." The three-sample sequence has
even symmetry in the same interval 27 as shown in
figures 4(b) and 4(c) given by sequence

S 6’-/“3 - (y_k,z +}-’-k‘1) +)7k]’

where the average frequency is taken over 7/2 rather
than 7.

h(mAK)

k@)

ansman iR
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h(mak) 8k | Ak,

k(2) p

1 l—
' ] o
Ay Ak, | —

{b) - Imaginary (-phase quadrature)
mAKk)

8, 1Ak (
1 L——%___ B k) s
k(1) +1 F
t;—zAk—J—»,zAk n Akz]“ﬂ o

M=4ak ! (mAk)
-1

{a) Rloal Gin-phase) e
st k(1)

(c) + imaginary (+phase quadrature)

Fig. 4
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Without loss eq (7) can be rewritten as

- - - -2
2 1 (yk+3 +yk+2) (yk+1 +yk)
=s< - >
AR 2 2

’ ®
yk:ik(tk’"‘clz, zk)’ k=1,3,5...

in which the variance is still for scale 7 but where
{y\} are average frequencies over 7/2 rather than 7.

Modified in the form of finite impulse responses
shown in figure 4 and rewritten as a mean-square
combination of an "in-phase"” variance and “phase-
quadrature” variance gives

- - - =12
O;—,(‘C)=l < Ops +)’k+2)_ Ot *¥2) S
4 2 2
)
— Gratie) |
+<[}’k*3 = _52-2*k—1'" Vel )

where the average frequency is taken over 7/2.

Another variance can be defined from two variances
of orthogonal in-phase and phase-quadrature
elements. This formalism bears a similarity to the
method of complex demodulation used in signal
processing [Bingham, Godfrey, and Tukey, 1967].
In this method, time-series data are assumed to
contain periodicities and viewed as consisting of
separate real and imaginary parts; the variance is
calculated for each part and the total is taken as

0% 1ot = Re| 0% | @Im|0?| = [Re?0? + Im?0?]%, (10)

where "@" means power-added together.
Functionally, the method of complex demodulation is
shown in figure 5. The real part is comprised of

sin(n mAKk)

cos (x mAk)

Methed of complex demodulation

Fig. §

deviates of the actual data (the in-phase observation)
and the + imaginary part are the deviates created by
shifting the observation window by +%T (the phase-



quadrature observation). In the case of a first-order
difference filter, we obtain impulse responses
precisely as shown in figure 4(a) for the real part and
figures 4(b) and 4(c) for the + imaginary part. The
sign of the imaginary part becomes unimportant as
the deviates are squared. The imaginary part that is
outside the actual data are wrapped; that is, h(M +k)
= h(k). This is justified because one assumes the
measurement is for periodic (sine and cosine)
functions which are in process, that is, unwindowed
and periodically extended.

The estimate to eq (9) is an equivalent description to
an ‘"in-phase” and "phase-quadrature” discrete
functional component separation. Using this method,
the variance of the even-symmetric function is
computed by moving the observation window by m/2,
for the "phase-quadrature” variance and adding this
to the "in-phase" variance. This has a sample statistic
given by

A2 11
0)7.(””'0) AM-1)| Z ( yk+1m +Z (vykﬂ,m ’( )
_ X, (t,~mt ) ~x,/(t,0)
where 5, = K-k o) T
’ mt,
mt, mt,
emp Gt = 57) T Ktamp Gt —57)
—_ 2 2
and y,, = ,

mt,

X{, Xp,...Xy With wrap such that X, = X goqy for
¢<land¢>N, i.e., x; =Xy Which reindexes to xy
as noted earlier. Shifting the data and using a wrap
simplifies the form of the sample variance of eq (11)
corresponding to eq (9) [for a discussion of wrapped
data, see Howe and Percival, 1995; also briefly in
Bloomfield, 1976]. Equation (11) is an average of
variances whereas eq (10) implies an RSS for
orthogonal (sin vs. cos) basis functions or an RMS
for random functions. Using simulation of common
power laws, the difference between an average and
RMS of variances turns out to be negligible in
practice. Returning to the previously mentioned
hypothetical example and using eq (11), the result is

not 0 but rather
.2 1 (AV
sm=2) = —1=—|.
62,(m-2) 12(2)
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HIGHER ORDER DIFFERENCES

Given continuous function f(k) with nth order

d’flk)
dk

derivative (

where "k" is the independent

variable), there are n derivatives for n possible
orders. Continuous function f(k) is an idealization;
all physical measurements will sample f(k) in
discrete, usually equispaced, increments Ak, despite
the fact that Ak, may be infinitesimally small. In all
cases, therefore, we are representing f(k) as discrete
continuous f(mAk) which describes a space- or time-
ordered sampled function with nth order possible
differences. The variance is like an average of these
squared differences. In this case, there are not n, but
always 2" independent differences in the average for
n orders. To preserve independence, the proper
variance is therefore the square root of the sum of
squares of 2" variances. To obtain stationary
deviates, the order of differencing is usually quite
small, frequently 1 or 2. This is because the
corresponding (high-pass) impulse response makes
new deviates which have a PSD which goes as f*2"
for each order n. Hence an f* PSD would need to
be differenced only twice (order 2) to realize white
Gaussian noise. Similarly, many functions can be
well approximated on an interval of finite length by
a polynomial of low degree. For the simple high
pass first difference (order 1), there are 21 or two
independent sets of differences and the proper
variance is just the RMS of the two variances from
each set as discussed in this paper. For the second
difference (order 2), there are 22 or four independent
sets of differences, and so on.

AN IMPROVED STATISTIC AT LONG TERM

I construct a sample variance (eq (11)) that is an
average of variances of separate in-phase and phase-
quadrature deviates (time-shifted by m/2) and given
by a procedure which wraps {x,.} or equivalently
{y\}. This is sufficient to avoid a potentially serious
estimation error compared to traditional AVAR at
long averaging times. Historically the Allan variance
is the composite variance of interest. It formally
derives from the standard variance (see eq (2)). We
compute various things from finite data which are
calculations of statistics (one being AVAR) as
estimators of the Allan variance. For a set of noise
processes, a good estimator (1) has the same mean as
the variance and (2) itself has a low variance. A
question is whether the three-sample sequence
introduced in this paper when combined with the



original AVAR implies a new definition having better
confidence or is a better estimate of the existing
definition. Better statistical certainty usually derives
from more degrees of freedom. An in-phase
convolving function (first term of eq (9)) is being
combined with another convolving function at phase
quadrature (second term of eq (9)). This is either an
extension of the historically used two-sample variance
or is a different concept.

We can establish an even better long-term estimator
which describes and hence predicts longer-term
frequency stability from available measurements. We
can average all possible N-1 sample variances, each
time shifted by 7,. For {y} = Yi»--., YNy, this
statistic is given by

) T
6 prai(T) = m E
J

M-1
1 =2 (12)
T
Where {_)Tk',J} = yj+1,_§.j+23“" ;"NJ» _y—17 _y.27"'a_y—_j
are spaced by 7, and {y .} is therefore wrapped and
reindexed by j. {yk‘j} are averages implied over 7 =
mr7,. Equation (3) can be combined into eq (12) for

82,4 in terms of {x}.
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This statistic and its associated impulse responses
average the variances of all possible fractional
frequency deviates. The new statistic properly picks
up and normalizes all functional variations at all 7
scales, and at the longest ones, namely as 7 — T/2.
Its use is recommended for at least the longest four
scales.

SIMULATION WITH RANDOM WALK OF {x,.}

Figure 6(a) shows 100 plots of calculations of the

square root of 6,20,a,(1:) for 100 simulations of
random walk of phase modulation (RWPM). Equation
(12) is the expression used for these calculations and
N =1024 for each simulation. Each of the simulation
averages of two-sample variances is equal to one.
The bottom plot is the 100-simulation total mean and
shows excellent agreement with theory. Figure 6(b)
is the same set of calculations using traditional square
root of maximally-overlapped AVAR. We see that
the spread in the estimates is greater using AVAR
instead of the new statistic in figure 6(a) especially at
7 = T/2. The new statistic is preferred at long
averaging times since it yields a distribution which is
less skewed and which is less susceptible to optimistic
(sometimes very optimistic) estimation errors.



sqit TOTALVAR for 100 RWPM simulations
10 , .

Mean of sqrt TOTALVAR for 100 RWPM simulations
10 T T

10 10 10 10

Fig. 6(a)

Top: New statistic (indicated as square root of TOTALVAR)
calculated for 100 RWPM simulations with unit (two-sample)
mean. Note the reduced skew and spread in the response for long
term averaging times compared to traditional square root of
maximally-overlapped AVAR shown at right at the top of figure
6(b).

Bottom: Mean of the 100 simulations using square root of
TOTALVAR agrees satisfactorily with theory.
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sqrt AVAR tor 100 RWPM simulations
10 T T

tau

Mean of sqrt AVAR for 100 RWPM simulations
10 T T

\
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tau

Fig. 6(b)

Top: For comparison, traditional square root of maximally-
overlapped AVAR is calculated for the same 100 RWPM
simulations as used at left for square root of TOTALVAR in figure
6(a). Note the wider skew and spread for long term averaging
times and the tendency toward an optimistic (sometimes very
optimistic) response.

Bottom: Mean of the 100 simulations using square root of
maximally-overlapped AVAR is shown.
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